Taycan Regenerative Braking Explained

Sign up for our weekly email to stay on top of the latest news and insights!

ZUFFENHAUSE, Germany — Porsche posted the following article on its website describing how the regenerative-braking system in the Taycan electric vehicle (EV) works.

How the Taycan Recovers Energy While Driving

The Taycan generates new energy when braking. This becomes possible with a unique recuperation management system. How does it work?

The autobahn is empty and you’re driving 200 kmh, until a small delivery van changes lanes to pass a truck. No problem – you’re maintaining a safe distance and slow down to 100 kmh. But a great deal of energy is consumed in the blink of an eye, as vehicles with an internal combustion engine convert kinetic energy into heat when the brakes are applied, which they’re unable to use. Electric vehicles, on the other hand, can recover a large portion of this energy, using the electric machines as generators when slowing down and ­storing the power generated in the ­battery.

For example, the Porsche Taycan can use a significant amount of the braking energy for propulsion, which is referred to as recuperation, based on the Latin ­- recuperare. Recuperation has established itself as a technical term. Kinetic braking energy increases twice as fast as speed – double the speed means four times the recuperation. When ­braking from 100 kmh, the Taycan ­generates four times as much energy as when braking from 50 kmh. This ­recuperation and the propulsion itself both play a key role in the efficiency of electric vehicles.

How does the Taycan do that?

“We incorporate the electric motors we produce in Zuffenhausen into the brake system for the purpose of energy recovery,” explains Ingo Albers, Head of Chassis Development at the Porsche development center in Weissach. “Electric motors can generally be controlled in four-quadrant operation.” In other words, an electric motor can work with both the rotation speed and torque running in the same – positive – direction. But each electric motor can also function as a generator, in which case the motor continues to turn in the same direction, but is now powered by the wheels rather than powering them itself. It ­generates electrical energy, rather than consuming it. And because it takes a lot of energy to power the motor and thus turn the rotor against the ­magnetic ­resistance, this negative torque can be used to brake the vehicle.

The control units and power electronics of the electric motors in the Taycan are therefore intelligently connected with the controls and logics of the brake control system. The conventional hydraulic wheel brake and electric motors can slow down the vehicle together. The experts in Weissach have developed a complex recuperation strategy. Within milliseconds, the electronics decide what percentage of the braking will be electric and what percentage will be hydraulic. While the driver cannot feel the difference, they can see it in the power meter in the instrument cluster. To view the entire post, click HERE

The Brake Report
The Brake Report

The BRAKE Report is an online media platform dedicated to the automotive and commercial vehicle brake segments. Our mission is to provide the global brake community with the latest news & headlines from around the industry.